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A novel (2+1)-dimensional integrable KdV equation with
peculiar solution structures∗
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The celebrated (1+1)-dimensional Korteweg de–Vries (KdV) equation and its (2+1)-dimensional extension, the
Kadomtsev–Petviashvili (KP) equation, are two of the most important models in physical science. The KP hierarchy is
explicitly written out by means of the linearized operator of the KP equation. A novel (2+1)-dimensional KdV extension,
the cKP3–4 equation, is obtained by combining the third member (KP3, the usual KP equation) and the fourth member
(KP4) of the KP hierarchy. The integrability of the cKP3–4 equation is guaranteed by the existence of the Lax pair and
dual Lax pair. The cKP3–4 system can be bilinearized by using Hirota’s bilinear operators after introducing an additional
auxiliary variable. Exact solutions of the cKP3–4 equation possess some peculiar and interesting properties which are not
valid for the KP3 and KP4 equations. For instance, the soliton molecules and the missing D’Alembert type solutions (the ar-
bitrary travelling waves moving in one direction with a fixed model dependent velocity) including periodic kink molecules,
periodic kink-antikink molecules, few-cycle solitons, and envelope solitons exist for the cKP3–4 equation but not for the
separated KP3 equation and the KP4 equation.
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1. Introduction

In linear science, the wave motion equation

utt − c2uxx = 0 (1)

is used to describe almost all the waves in natural science be-
cause the general solution, the D’Alembert solution

u = f (x−|c|t)+g(x+ |c|t) (2)

includes arbitrary waves ( f and g are arbitrary functions of
the indicated variables) moving in the x direction or in the −x
direction with a fixed velocity |c|.

The simplest extension of the wave motion equation (1)
in nonlinear science is the so-called Korteweg de–Vries (KdV)
equation[1]

ut +uxxx +6uux = 0. (3)

The KdV equation possesses various applications in physics
and other scientific fields. It approximately describes the evo-
lution of long, one-dimensional waves in many physical set-
tings, including shallow-water waves with weakly non-linear
restoring forces, long internal waves in a density-stratified
ocean, ion acoustic waves in a plasma, acoustic waves on a
crystal lattice,[1] and the 2-dimensional quantum gravity.[2]

The KdV equation can be solved by using the inverse scatter-
ing transform[3] and other powerful methods such as the Hi-
rota’s bilinear method[4] and the Darboux transformation.[5]

The KdV equation and other nonlinear extensions lost the
D’Alembert type solutions, arbitrary waves moving in one di-
rection with a fixed model dependent (material dependent) ve-
locity. Thus, one can naturally ask the following important
question: Can we find a nonlinear extension such that the miss-
ing D’Alembert type waves can be found?

To describe two-dimensional nonlinear waves which are
the extensions of the (1+1)-dimensional KdV waves, there are
some different versions of the (2+1)-dimensional integrable
KdV equations including the Kadomtsev–Petviashvili (KP, or
KP3) equation[6]

ut −a(6uux +uxxx−3wy) = 0, uy = wx, (4)

the Nizhnik–Novikov–Veselov (NNV) equation[7–9]

ut +uxxx+uyyy+3(uv)x+3(uw)y = 0, ux = vy, uy =wx, (5)

the asymmetric NNV equation (ANNV),[10,11] or named
Boiti–Leon–Manna–Pempinelli equation[12]

ut +uxxx +3(uv)x = 0, ux = vy, (6)

the Ito equation[13]

aut +uy +uxxx +3uux +3vx +bux = 0,

uy = wx, vy = wux, (7)

and the breaking soliton equation[14,15]

ut +uxxy +4uwx +2wux = 0, uy = wx. (8)
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It is clear that when y = x all the (2+1)-dimensional integrable
KdV equations (4)–(8) are reduced back to the equivalent KdV
equation (3).

The stability and dynamics of soliton molecules (soli-
ton bound states) have attracted considerable attention in
several areas such as the optics[16–19,21] and Bose–Einstein
condensates.[20] Some theoretical proposals to form soli-
ton molecules have been established.[22,23] Especially, in
Refs. [24,25], a new mechanism, the velocity resonance, to
form soliton molecules is proposed. It is found that the stan-
dard (1+1)-dimensional KdV equation (3) does not possess
soliton molecules. However, in real physics higher order
effects such as the higher order dispersions and higher or-
der nonlinearities have been neglected when the KdV equa-
tion (3) is derived.[26] Whence the higher order effects are
added to the usual KdV equation, one can really find the soli-
ton molecules.[24] By using the velocity resonance mecha-
nism, some authors found new types of soliton molecules such
as the dromion molecules and half periodic kink molecules in
some physical systems.[27–29]

After detailed calculations, one can find that there are
no soliton molecules for all the (2+1)-dimensional KdV ex-
tensions (4)–(8). To find soliton molecules for the (2+1)-
dimensional KdV systems, we have to consider their higher
order effects. For integrable systems, we can directly add the
integrable higher order systems to the lower order ones. In
Section 2, we write down the positive KP hierarchy in terms
of the linearized operator of the KP equation (4). Then we
write down a novel (2+1)-dimensional integrable KdV system,
the combination of the KP3 and the KP4 equations (cKP3–4),
which will be reduced back to the usual (1+1)-dimensional
KdV equation (3) when y = x. The Lax pair and the dual Lax
pair of the cKP3–4 equation are also given in Section 2. In
Section 3, we study the multiple soliton solutions of the novel
(2+1)-dimensional KdV equation. The soliton molecules are
investigated in Section 4. It is found that a soliton molecule
may include an arbitrary number of solitons. For this model,
a single soliton molecule without other solitons may possess
arbitrary shape. This fact can be simply proved by studying its
traveling waves. The last section is a summary and discussion.

2. A novel (2+1)-dimensional KdV extension:
cKP3–4 equation

For a (1+1)-dimensional integrable system, there is a so-
called recursion operator Φ such that a set of infinitely many
commute symmetries can be directly obtained Kn = Φnux.
Thus, an integrable hierarchy

utn = Φ
nux, n = 0, 1, . . . , ∞, (9)

can be simply obtained.

However, in the (2+1)-dimensional case, there is no such
kind of recursion operators to find infinitely many commute
symmetries and then the integrable hierarchy. Fortunately, by
means of the formal series symmetry approach,[30] for many
kinds of (2+1)-dimensional integrable systems including the
KP equation (4),[31] the NNV equation (5),[32] and the ANNV
equation (6), one can find infinitely many commute symme-
tries by using their linearized operators. For instance, for the
KP equation (4) with a = 1, a symmetry σ is defined as a so-
lution of its linearized equation

6σux +6uσx +σxxx−3∂
−1
x σyy−σt ≡ Lσ = 0, (10)

where L is the linearized operator of the KP equation (4) and
∂−1

x is defined as ∂−1
x ∂x = ∂x∂−1

x = 1. In Ref. [31], it is proven
that the following expressions

σn =
1

2(n−1)!3n Lnyn−1, n = 1, 2, . . . ,∞, (11)

are all commute symmetries of the KP equation (4) for arbi-
trary integers n≥ 1.

Thus we obtain the integrable positive KP hierarchy in the
form

utn =
1

2(n−1)!3n Lnyn−1, n = 1, 2, . . . ,∞, (12)

L≡ ∂
3
x +6∂xu−3∂

−1
x ∂

2
y −∂t . (13)

The first five of Eq. (12) read (uy = wx, uyy = zxx, uyyy = mxxx)

KP1: ut1 = ux, (14)

KP2: ut2 =−2uy, (15)

KP3: ut3 =−6uux−uxxx +3wy, (16)

KP4: ut4 = 12(2wux− zy +uxxy +4uuy) , (17)

KP5: ut5 = uxxxxx +10
[
(u3 +uuxx− zu−w2− zxx)x

+uxuxx−uzx−∂
−1
x (uzxx +w2

x)
]
+5my. (18)

It is not difficult to find that the KP3 equation (16) is just the
KP equation (4) by taking t3 = −at. It is interesting that in
addition to the KP3 equation, the KP4 equation is also an ex-
tension of the KdV equation. In other words, when y = x
the KP4 equation (17) is also reduced back to an equivalent
form of the usual (1+1)-dimensional KdV equation (3). Be-
cause the commute KP3 and KP4 equations are both the (2+1)-
dimensional KdV extensions, we can obtain a novel integrable
(2+1)-dimensional KdV equation, the cKP3–4 equation

ut = a(6uux +uxxx−3wy)+b(2wux− zy +uxxy +4uuy) ,

uy = wx, uyy = zxx. (19)

It is trivial that when y → x, w → u, z → u, the (2+1)-
dimensional KdV equation (19) is reduced back to the usual
KdV equation (3) up to some suitable scaling and Galileo
transformations.

To see the integrability of the model (19), we directly
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write down its Lax pair

ψy = i(ψxx +uψ), i≡
√
−1, (20)

ψt = 2ibψxxxx +4aψxxx +4ibuψxx +2(3au+2ibux +bw)ψx

−i(3aw+bz−2bu2 +3aiux−2buxx + ibwx)ψ, (21)

and the dual Lax pair

φy =−i(φxx +uφ), (22)

φt =−2ibφxxxx +4aφxxx−4ibuφxx +2(3au−2ibux +bw)φx

+ i(3aw+bz−2bu2−3aiux−2buxx− ibwx)φ . (23)

One can directly verify that the compatibility condition ψyt =

ψty (and/or φyt = φty) is nothing but the field u is a solution of
the cKP3–4 equation (19).

Similar to the KP equation (4), one can also directly ver-
ify that

ut−1 = (ψφ)x, (24)

where the spectra functions ψ and φ defined by Eqs. (20)–
(23) are a negative flow of the cKP3–4 equation. By using
the method proposed in Refs. [33,34], the whole negative KP
hierarchy can be obtained from Eq. (24) in terms of the Lax
operators defined in Eqs. (20) and (22).

The existence of the Lax pairs allows one to study the
cKP3–4 equation by means of the standard methods such as
the inverse scattering transformation, Darboux transformation,
∂̄ approach, and so on. To study the multiple soliton solutions,
the Hirota’s bilinear method is the simplest way.

3. Bilinearization of the cKP3–4 equation (19)

By making the transformation

u = 2(ln f )xx, w = 2(ln f )xy, z = 2(ln f )yy, (25)

the cKP3–4 equation (19) becomes

(2 fxxx f fxx + fxxxxx f 2−3 f 2 fxyy−6 f 2
xx fx−5 fxxxx f fx

+3 f fx fyy +6 f fy fxy +8 fxxx f 2
x −6 fx f 2

y )a

+(2 fxx fxxy f − fyyy f 2−2 f 2
xx fy−4 fxx fxy fx

+ fxxxxy f 2−4 fxxxy f fx− fxxxx fy f +3 fyy fy f

+4 fxxy f 2
x +4 fxxx fy fx−2 f 3

y )b− fxxt f 2

+2 fxt fx f + ft fxx f −2 ft f 2
x = 0. (26)

The trilinear equation (26) can not be directly bilinearized.
However, if we introduce an auxiliary variable τ such that

[DxDτ +a(3D2
y−D4

x)] f · f = 0, (27)

then the trilinear equation (26) can be rewritten as

( f ∂x−2 fx)[a(2bD3
xDy−3DxDt +3DxDτ)+bDyDτ ] f · f = 0,

which can be solved by the bilinearized equation

[a(2bD3
xDy−3DxDt +3DxDτ)+bDyDτ ] f · f = 0. (28)

In Eqs. (27) and (28), the Hirota’s bilinear operator Dx is de-
fined by

Dn
x f ·g = (∂x−∂x′)

n f (x)g(x′)
∣∣
x′=x , (29)

and the other operators {Dy, Dt , Dτ} are defined in the same
way.

Finally, the multiple soliton solutions of the cKP3–4
equation (19) are given by Eq. (25) with f being a solution
of the trilinear equation (26) which can be solved by the bi-
linear equation system (27) and (28). The procedure solving
the bilinear equation system (27) and (28) is standard and well
known. We just write down the final result in a fully space–
time reversal symmetric form[35,36]

f =∑
{ν}

K{ν} cosh

(
1
2

N

∑
i=1

νiξi

)
, (30)

ξi=kix+ liy+
a
ki
(k4

i −3l2
i )(t + τ)+

bli
k2

i
(k4

i − l2
i )t +ξi0, (31)

K{ν}=∏
i< j

ai j, ai j≡
√

k2
i k2

j (ki−νiν jk j)2+(kil j−k jli)2, (32)

where the summation on {ν} ≡ {ν1, ν2, . . . , νN} must
be done for all non-dual permutations νi = 1, −1, i =
1, 2, . . . , N. Because the cosh function used in Eq. (30) is an
even function, we call two permutations, {ν} and −{ν}, are
dual to each other. The parameters ki, li, and ξi0 in Eq. (31) are
arbitrary constants. In the following, the auxiliary parameter
τ in Eq. (31) will be taken as zero because it can be absorbed
in the arbitrary parameters ξi0.

Especially, the one-soliton solution of Eq. (19) can be
written as

u =
1
2

k2sech2
(

ξ

2

)
,

ξ = kx+ ly+
a
k
(k4−3l2)t +

bl
k2 (k

4− l2)t +ξ0, (33)

with arbitrary constants k, l, and ξ0.

The two-soliton solution possesses the form

u =
a+12a−12

[
k2

2 cosh(ξ1)+ k2
1 cosh(ξ2)

]
+ k2

2k2
1(k

2
1− k2

2)
2 +(k2

1 + k2
2)(k1l2− k2l1)2

2
[
a−12 cosh

(
ξ1+ξ2

2

)
+a+12 cosh

(
ξ1−ξ2

2

)]2 , (34)

with ξi, i = 1, 2 being given by Eq. (31) and

a±i j =
√

k2
i k2

j (ki± k j)2 +(kil j− k jli)2. (35)
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4. Soliton molecules and travelling wave solu-
tions of Eq. (19)

To find possible soliton molecule solutions, one can
use the velocity resonant mechanism.[24,25] For the (2+1)-
dimensional KdV equation (19), the soliton resonant condi-
tions read

ki

k j
=

li
l j

=

a
ki
(k4

i −3l2
i )+

bli
k2

i
(k4

i − l2
i )

a
k j
(k4

j −3l2
j )+

bl j

k2
j
(k4

j − l2
j )
, ki 6=±k j. (36)

The solution of Eq. (36) possesses the form

li =−
aki

b
, l j =−

ak j

b
. (37)

Under the resonance condition (37), two-soliton solution (34)
becomes a two-soliton molecule

u =
(k2

1− k2
2)
[
k2

2 cosh(ξ1)+ k2
1 cosh(ξ2)+ k2

1− k2
2
]

2
[
(k1− k2)cosh

(
ξ1+ξ2

2

)
+(k1 + k2)cosh

(
ξ1−ξ2

2

)]2

(38)
with

ξi = ki

(
x− a

b
y−2

a3

b2 t +ξi0

)
, i = 1, 2. (39)

From the resonance condition (37) and the travelling variable
(39), one can find some interesting things.

The first one is that the resonance condition (37) shows
us that this kind of soliton molecules are valid only for the
cKP3–4 equation (19) but not for both the KP3 and the KP4
equations.

The second interesting result is that the resonance can
happen for any numbers of solitons with the resonant condi-
tions

li j =−
aki j

b
, j = 1, 2, . . . ,n, (40)

and travelling wave variables

ξi j = ki j

(
x− a

b
y−2

a3

b2 t +ξi j0

)
, j = 1, 2, . . . , n. (41)

Figure 1 displays the evolution of a special four-soliton
molecule for the field u expressed by Eq. (25) with f being
given by Eq. (30) with N = 4, the resonant conditions (40) for
n = 4, and the parameter selections

a = b = 1, k1 =
7

16
, k2 =

3
8
, k3 =

1
4
, k4 =

7
40

,

ξ10 = 0, ξ20 = ξ40 =−15, ξ30 = 12. (42)

Figure 2 shows the interaction between one soliton and
one three-soliton molecule for the field u expressed by Eq. (25)
with f being given by Eq. (30) with N = 4, the resonant con-
ditions (40) for n = 3, and the parameter selections

a = b = l4 = 1, k1 =
7
16

, k2 =
3
8
, k3 =

1
4
, k4 =

7
40

,

xi10 = 0, ξ20 = ξ40 =−15, ξ30 = 12. (43)
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Fig. 1. (a) Four-soliton molecule expressed by Eq. (25) with Eqs. (30),
(40), (42) and N = n = 4 at time t = 0. (b) Same as in (a) but at t = 15.
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Fig. 2. The interaction between one soliton and one three-soliton
molecule for the field u given by Eq. (25) with Eqs. (30), (40), (43),
N = 4, and n = 3 at time t = 0.

The third interesting fact is that the arbitrariness of the
resonance for the numbers of solitons hints us that the (2+1)-
dimensional KdV equation (19) may possess more abundant
soliton (and soliton molecule) structures. To check this pos-
sibility, we study the traveling wave solutions of the cKP3–4
equation (19) in the form

u =U(kx+ ly+ωt) =U(ξ ). (44)

Substituting Eq. (44) into Eq. (19) yields

(ωk2 +bl3 +3akl2)Uξ − k2(ak+bl)(k2Uξ ξ ξ +6UUξ ) = 0.
(45)

From Eq. (44), one can directly find that if the parameters l
and ω are taken as

l =−a
b

k, ω =−2
a3

b2 k, (46)

then U(ξ ) becomes an arbitrary function. In other words, sim-
ilar to the linear wave motion equation (1) the arbitrary travel-
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ling wave moving to a special direction (vertical to ay−bx = 0
for Eq. (19)) in a fixed velocity c (c = 2a2

√
a2 +b2/b2 for

Eq. (19)) may exist in nonlinear cases. Thus, the question
raised in the introduction section possesses a positive answer,
the missing D’Alembert type solutions can be re-found in non-
linear systems, say, the cKP3–4 equation.

Equation (46) is just the velocity resonant condition of the
soliton molecules. Thus, the soliton molecules obtained from
the multiple solitons with the velocity resonant mechanism are
just the special case of the arbitrary travelling wave in the form

u = u1

(
x− a

b
y− 2a3

b2 t
)
. (47)

It should be emphasized that this kind of arbitrary travelling
wave exists only for the cKP3–4 equation (19) but not the KP3
equation (b = 0) and the KP4 equation (a = 0).

Figure 3 exhibits some special examples of Eq. (47) with
a = b = 1.

Example 1 Few-cycle solitons and envelope solitons

uex1 = sech(η)2 cos(cη), η ≡ 2t− x+ y. (48)

The solution (48) displays the few-cycle soliton structure for
small c (Fig. 3(a) for c = 4) and the envelope soliton struc-
ture for large c (Fig. 3(b) for c = 50). Few-cycle solitons have
been found in nonlinear optic systems both in experiments[37]

and in theories[38–40] but have not yet been reported in the KP
hierarchy. Envelope solitons usually appear in complex sys-
tems like the nonlinear Schrödinger equation but not in real
systems.

Example 2 Kink solitons and periodic kink (PK) solitons

uex2 = tanh(η)[1− ccos(η)]. (49)

The expression (49) is a kink soliton for c = 0 and a periodic
kink for nonzero c (Fig. 3(c) for c = 0.05).

Example 3 Kink–kink molecules and PK–HPK
molecules

uex3 =−
k1 exp(k1η)+ k2 exp[k2(η + x0)]

1+ exp(k1η)+ exp[k2(η + x0)]
[1− ccos(kη)].

(50)
A half periodic kink (HPK) is defined as a kink possessing
the property such that it tends to a constant on one side of the
kink center and tends to a periodic wave on the other side of
the kink center.[29] The solution (50) expresses the kink–kink
molecules for {c = 0, k2 6= k1} (as shown in Fig. 3(d) for c =
0, k1 =−1, k2 =−2, and x0 = 8) and the PK–HPK molecules
(as shown in Fig. 3(e) for c = 0.06, k1 =−1, k2 =−2,k = 5,
and x0 = 10).

Example 4 Dissipative solitons, kink–antikink
molecules, and PK–PAK (periodic kink and periodic antikink)
molecules

uex4 =
1
2
+

1
2
[c1 cos(cη)−1] tanh(η +y0) tanh(η−x0). (51)

The expression (51) displays the dissipative soliton (or kink–
antikink molecule) structure for c1 = 0 or c = 0 and the PK–
PAK molecule (or periodic dissipative soliton) structure for
cc1 6= 0. Figure 4(f) is a plot of a special PK–PAK molecule
expressed by Eq. (51) with the parameter selections

x0 =−5, y0 =−5, c1 = 0.1, c = 5

at time t = 0.
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Fig. 3. (a) Few cycle soliton structure expressed by Eq. (48) with c = 4 at
time t = 0. (b) Envelope soliton structure expressed by Eq. (48) with c = 50
at time t = 0. (c) Periodic kink given by Eq. (49) with c = 0.5 at time t = 0.
(d) Kink–kink molecule given by Eq. (50) with c = 0, k1 = −1, k2 = −2,
and x0 = 8. (e) Kink–kink molecule given by Eq. (50) with c = 0.06, k1 =
−1, k2 = −2, k = 5, and x0 = 10 at t = 0. (f) PK–APK molecule given by
Eq. (51) with x0 = y0 =−c =−5 and c1 = 0.1 at time t = 0.

Without the condition (46), the solution of Eq. (45) can
be written as

U(ξ ) =
3akl2 +bl3 + k2ω

6k2(ak+bl)
− 2

3
c2k2(2m2−1)

+2c2k2m2cn2(cξ −ξ0, m) (52)

with arbitrary constants c, ξ0, m, k, l, and ω . In additional
to the arbitrary travelling wave solution (47), the general trav-
elling wave of the cKP3–4 (52) is a periodic wave for m 6= 1
and/or a soliton solution for m = 1.

5. Discussion and conclusion
In summary, there are some different types of (2+1)-

dimensional KdV extensions. In this paper, it is found that
in addition to the KP3 equation, the KP4 equation is also an
extension of the KdV equation in (2+1) dimensions. Thus, the
combination of the KP3 equation and the KP4 equation (i.e.
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the cKP3–4 equation (19)) is also a (2+1)-dimensional KdV
extension. The Lax pair and the dual Lax pair of the cKP3–4
equation are explicitly given. The cKP3–4 equation can be bi-
linearized by introducing an auxiliary parameter. The multiple
soliton solutions can be directly written down with help of the
bilinearized equation system and the auxiliary parameter can
be absorbed by the soliton position parameters.

It is known that the KP3 equation is widely used in
many physical fields especially in fluids to describe weak
two-dimensional effects on one-dimensional KdV waves.[6]

Though we have not yet strictly derived the cKP3–4 equation
from real physical systems, we may believe that the model
may find potential applications in future because of the exis-
tence of the D’Alembert type waves and the inclusion of some
further y-derivative dependent terms. The cKP3–4 equation
may be a better model to describe real two-dimensional shal-
low water waves since the more y dependent effects have been
included.

The cKP3–4 equation is quite different from any member
of the KP hierarchy, say, the KP3 and KP4 equations of the hi-
erarchy (12). Some interesting properties are valid only for the
combined system (19) but not for the separated KP3 and KP4
systems. For instance, the soliton molecules exist only for the
cKP3–4 but not for the KP3 and KP4 equations. Any num-
bers of solitons can be involved in one soliton molecule. The
D’Alembert type solutions (arbitrary travelling wave moving
in one direction with fixed model dependent velocity) includ-
ing various new types of solitons and soliton molecules can
be found for the cKP3–4 equation. This kind of arbitrariness
exists for linear waves but it has not yet been found for any
other known nonlinear systems. The more about the cKP3–
4 equation (19), say the interactions among the special local
excitations shown in Fig. 3 and the usual solitons (25) with
Eq. (30), should be further studied.

References
[1] Crighton D G 1995 Appl. Math. 39 39

[2] Guo H Y, Wang Z H and Wu K 1991 Phys. Lett. B 264 277
[3] Gardner C S, Greene J M, Kruskal M D and Miura R M 1967 Phys.

Rev. Lett. 19 1095
[4] Hirota R 2004 The direct method in soliton theory (Edited and trans-

lated by Nagai A, Nimmo J and Gilson C, Cambridge Tracts in Math-
ematics No. 155 (1st Edn.)) (Cambrifge: Cambridge University Press)
pp. 1–61

[5] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in
Integrable Systems: Theory and their Applications to Geommetry (1st
Edn.) (Dordrecht, Netherland: Springer) pp. 1–64

[6] Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[7] Nizhnik L P 1980 Sov. Phys. Dokl. 25 706
[8] Veselov A P and Novikov S P 1984 Sov. Math. Dokl. 30 588
[9] Novikov S P and Veselov A P 1986 Physica D 18 267

[10] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[11] Lou S Y and Ruan H Y 2001 J. Phys. A: Math. Gen. 35 305
[12] Boiti M, Leon J J P, Manna M and Pempinelli F 1986 Inverse Problems

2 271
[13] Ito M 1990 J. Phys. Soc. Jpn. 49 771
[14] Bogoyavlenskii G I 1990 Russ. Math. Surveys 45 1
[15] Lou S Y 1997 Commun. Theor. Phys. 28 41
[16] Stratmann M, Pagel T and Mitschke F 2005 Phys. Rev. Lett. 95 143902
[17] Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Science 356

50
[18] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[19] Wang C, Wang L, Li X H, et al. 2019 Nanotechnology 30 025204
[20] Łakomy K, Nath R and Santos L 2012 Phys. Rev. A 86 013610
[21] Peng J S, Boscolo S, Zhao Z H and Zeng H P 2019 Sci. Adv. 5 eaax1110
[22] Crasovan L C, Kartashov Y V, Mihalache D, Torner L, Kivshar Y S and

Perez-Garcia V M 2003 Phys. Rev. E 67 046610
[23] Yin C, Berloff N G, Perez-Garcia V M, Novoa D, Carpentier A V and

Michinel H 2011 Phys. Rev. A 83 051605
[24] Lou S Y 2020 J. Phys. Commun. 4 041002
[25] Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese)
[26] Fokas A S and Liu Q M 1996 Phys. Rev. Lett. 77 2347
[27] Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[28] Cui C J, Tang X Y and Cui Y J 2020 Appl. Math. Lett. 102 106109
[29] Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271
[30] Lou S Y 1993 Phys. Rev. Lett. 71 4099
[31] Lou S Y 1993 J. Phys. A: Math. Gen. 26 4387
[32] Lou S Y 1994 J. Math. Phys. 35 1755
[33] Lou S Y 1998 Physica Scripta 57 481
[34] Hu X B, Lou S Y and Qian X M 2009 Stud. Appl. Math. 122 305
[35] Lou S Y 2018 J. Math. Phys. 59 083507
[36] Lou S Y 2020 Acta Phys. Sin. 69 010503 (in Chinese)
[37] Im S J, Husakou A and Herrmann J 2010 Phys. Rev. A 82 025801
[38] Sun Y Y and Wu H 2013 Phys. Scr. 88 065001
[39] Gao Z J and Lin J 2018 Opt. Express 26 9027
[40] Gao Z J, Li H J and Lin J 2019 J. Opt. Soc. Am. B 36 312

080502-6

http://dx.doi.org/10.1007/978-94-011-0017-5
http://dx.doi.org/10.1016/0370-2693(91)90349-U
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1016/0167-2789(86)90187-9
http://dx.doi.org/10.1063/1.532219
http://dx.doi.org/10.1088/0305-4470/35/2/310
http://dx.doi.org/10.1088/0266-5611/2/3/005
http://dx.doi.org/10.1088/0266-5611/2/3/005
http://dx.doi.org/10.1143/JPSJ.49.771
http://dx.doi.org/10.1088/0253-6102/28/1/41
http://dx.doi.org/10.1103/PhysRevLett.95.143902
http://dx.doi.org/10.1126/science.aal5326
http://dx.doi.org/10.1126/science.aal5326
http://dx.doi.org/10.1103/PhysRevLett.121.023905
http://dx.doi.org/10.1088/1361-6528/aae8c1
http://dx.doi.org/10.1103/PhysRevA.86.013610
http://dx.doi.org/10.1126/sciadv.aax1110
http://dx.doi.org/10.1103/PhysRevE.67.046610
http://dx.doi.org/10.1103/PhysRevA.83.051605
https://doi.org/10.1088/2399-6528/ab833e
http://aps.cpsjournals.org.cn/CN/abstract/abstract75248.shtml
http://dx.doi.org/10.1103/PhysRevLett.77.2347
http://dx.doi.org/10.1016/j.aml.2019.106168
http://dx.doi.org/10.1016/j.aml.2019.106109
http://dx.doi.org/10.1016/j.aml.2020.106271
http://dx.doi.org/10.1103/PhysRevLett.71.4099
http://dx.doi.org/10.1088/0305-4470/26/17/043
http://dx.doi.org/10.1063/1.530872
http://dx.doi.org/10.1088/0031-8949/57/4/001
http://dx.doi.org/10.1111/j.1467-9590.2009.00435.x
http://dx.doi.org/10.1063/1.5051989
http://aps.cpsjournals.org.cn/CN/abstract/abstract75237.shtml
http://dx.doi.org/10.1103/PhysRevA.82.025801
http://dx.doi.org/10.1088/0031-8949/88/06/065001
http://dx.doi.org/10.1364/OE.26.009027
http://dx.doi.org/10.1364/JOSAB.36.000312

	1. Introduction
	2. A novel (2+1)-dimensional KdV extension: cKP3–4 equation
	3. Bilinearization of the cKP3–4 equation (19)
	4. Soliton molecules and travelling wave solutions of Eq. (19)
	5. Discussion and conclusion 
	References

